metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.116D10, C10.1052+ 1+4, (C4×D4)⋊24D5, (D4×C20)⋊26C2, (C4×D20)⋊33C2, C20⋊D4⋊10C2, C4⋊D20⋊16C2, C20⋊7D4⋊12C2, C20⋊2D4⋊10C2, C4⋊C4.287D10, D10⋊D4⋊11C2, (C2×D4).223D10, C4.46(C4○D20), C42⋊D5⋊15C2, C4.Dic10⋊16C2, D10.12D4⋊9C2, C20.113(C4○D4), (C2×C10).106C24, (C4×C20).160C22, (C2×C20).164C23, C22⋊C4.118D10, (C22×C4).214D10, C2.24(D4⋊6D10), C2.18(D4⋊8D10), (D4×C10).265C22, (C2×D20).268C22, C23.23D10⋊4C2, C4⋊Dic5.364C22, (C22×C20).83C22, (C4×Dic5).86C22, (C2×Dic5).47C23, C10.D4.7C22, (C22×D5).40C23, C22.131(C23×D5), C23.103(C22×D5), C23.D5.16C22, D10⋊C4.88C22, (C22×C10).176C23, C5⋊2(C22.34C24), C10.48(C2×C4○D4), C2.55(C2×C4○D20), (C2×C4×D5).254C22, (C5×C4⋊C4).334C22, (C2×C4).581(C22×D5), (C2×C5⋊D4).19C22, (C5×C22⋊C4).129C22, SmallGroup(320,1234)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42.116D10
G = < a,b,c,d | a4=b4=c10=1, d2=a2, ab=ba, cac-1=dad-1=a-1b2, bc=cb, dbd-1=a2b-1, dcd-1=a2c-1 >
Subgroups: 958 in 240 conjugacy classes, 95 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C42⋊C2, C4×D4, C4×D4, C4⋊D4, C22.D4, C42.C2, C4⋊1D4, C4×D5, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×D5, C22×D5, C22×C10, C22.34C24, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, C2×C5⋊D4, C22×C20, D4×C10, C42⋊D5, C4×D20, D10.12D4, D10⋊D4, C4.Dic10, C4⋊D20, C23.23D10, C20⋊7D4, C20⋊2D4, C20⋊D4, D4×C20, C42.116D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, C22×D5, C22.34C24, C4○D20, C23×D5, C2×C4○D20, D4⋊6D10, D4⋊8D10, C42.116D10
(1 110 63 118)(2 144 64 84)(3 102 65 120)(4 146 66 86)(5 104 67 112)(6 148 68 88)(7 106 69 114)(8 150 70 90)(9 108 61 116)(10 142 62 82)(11 43 97 123)(12 151 98 139)(13 45 99 125)(14 153 100 131)(15 47 91 127)(16 155 92 133)(17 49 93 129)(18 157 94 135)(19 41 95 121)(20 159 96 137)(21 156 76 134)(22 50 77 130)(23 158 78 136)(24 42 79 122)(25 160 80 138)(26 44 71 124)(27 152 72 140)(28 46 73 126)(29 154 74 132)(30 48 75 128)(31 119 52 101)(32 85 53 145)(33 111 54 103)(34 87 55 147)(35 113 56 105)(36 89 57 149)(37 115 58 107)(38 81 59 141)(39 117 60 109)(40 83 51 143)
(1 100 40 28)(2 91 31 29)(3 92 32 30)(4 93 33 21)(5 94 34 22)(6 95 35 23)(7 96 36 24)(8 97 37 25)(9 98 38 26)(10 99 39 27)(11 58 80 70)(12 59 71 61)(13 60 72 62)(14 51 73 63)(15 52 74 64)(16 53 75 65)(17 54 76 66)(18 55 77 67)(19 56 78 68)(20 57 79 69)(41 105 136 88)(42 106 137 89)(43 107 138 90)(44 108 139 81)(45 109 140 82)(46 110 131 83)(47 101 132 84)(48 102 133 85)(49 103 134 86)(50 104 135 87)(111 156 146 129)(112 157 147 130)(113 158 148 121)(114 159 149 122)(115 160 150 123)(116 151 141 124)(117 152 142 125)(118 153 143 126)(119 154 144 127)(120 155 145 128)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 125 63 45)(2 44 64 124)(3 123 65 43)(4 42 66 122)(5 121 67 41)(6 50 68 130)(7 129 69 49)(8 48 70 128)(9 127 61 47)(10 46 62 126)(11 85 97 145)(12 144 98 84)(13 83 99 143)(14 142 100 82)(15 81 91 141)(16 150 92 90)(17 89 93 149)(18 148 94 88)(19 87 95 147)(20 146 96 86)(21 114 76 106)(22 105 77 113)(23 112 78 104)(24 103 79 111)(25 120 80 102)(26 101 71 119)(27 118 72 110)(28 109 73 117)(29 116 74 108)(30 107 75 115)(31 139 52 151)(32 160 53 138)(33 137 54 159)(34 158 55 136)(35 135 56 157)(36 156 57 134)(37 133 58 155)(38 154 59 132)(39 131 60 153)(40 152 51 140)
G:=sub<Sym(160)| (1,110,63,118)(2,144,64,84)(3,102,65,120)(4,146,66,86)(5,104,67,112)(6,148,68,88)(7,106,69,114)(8,150,70,90)(9,108,61,116)(10,142,62,82)(11,43,97,123)(12,151,98,139)(13,45,99,125)(14,153,100,131)(15,47,91,127)(16,155,92,133)(17,49,93,129)(18,157,94,135)(19,41,95,121)(20,159,96,137)(21,156,76,134)(22,50,77,130)(23,158,78,136)(24,42,79,122)(25,160,80,138)(26,44,71,124)(27,152,72,140)(28,46,73,126)(29,154,74,132)(30,48,75,128)(31,119,52,101)(32,85,53,145)(33,111,54,103)(34,87,55,147)(35,113,56,105)(36,89,57,149)(37,115,58,107)(38,81,59,141)(39,117,60,109)(40,83,51,143), (1,100,40,28)(2,91,31,29)(3,92,32,30)(4,93,33,21)(5,94,34,22)(6,95,35,23)(7,96,36,24)(8,97,37,25)(9,98,38,26)(10,99,39,27)(11,58,80,70)(12,59,71,61)(13,60,72,62)(14,51,73,63)(15,52,74,64)(16,53,75,65)(17,54,76,66)(18,55,77,67)(19,56,78,68)(20,57,79,69)(41,105,136,88)(42,106,137,89)(43,107,138,90)(44,108,139,81)(45,109,140,82)(46,110,131,83)(47,101,132,84)(48,102,133,85)(49,103,134,86)(50,104,135,87)(111,156,146,129)(112,157,147,130)(113,158,148,121)(114,159,149,122)(115,160,150,123)(116,151,141,124)(117,152,142,125)(118,153,143,126)(119,154,144,127)(120,155,145,128), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,125,63,45)(2,44,64,124)(3,123,65,43)(4,42,66,122)(5,121,67,41)(6,50,68,130)(7,129,69,49)(8,48,70,128)(9,127,61,47)(10,46,62,126)(11,85,97,145)(12,144,98,84)(13,83,99,143)(14,142,100,82)(15,81,91,141)(16,150,92,90)(17,89,93,149)(18,148,94,88)(19,87,95,147)(20,146,96,86)(21,114,76,106)(22,105,77,113)(23,112,78,104)(24,103,79,111)(25,120,80,102)(26,101,71,119)(27,118,72,110)(28,109,73,117)(29,116,74,108)(30,107,75,115)(31,139,52,151)(32,160,53,138)(33,137,54,159)(34,158,55,136)(35,135,56,157)(36,156,57,134)(37,133,58,155)(38,154,59,132)(39,131,60,153)(40,152,51,140)>;
G:=Group( (1,110,63,118)(2,144,64,84)(3,102,65,120)(4,146,66,86)(5,104,67,112)(6,148,68,88)(7,106,69,114)(8,150,70,90)(9,108,61,116)(10,142,62,82)(11,43,97,123)(12,151,98,139)(13,45,99,125)(14,153,100,131)(15,47,91,127)(16,155,92,133)(17,49,93,129)(18,157,94,135)(19,41,95,121)(20,159,96,137)(21,156,76,134)(22,50,77,130)(23,158,78,136)(24,42,79,122)(25,160,80,138)(26,44,71,124)(27,152,72,140)(28,46,73,126)(29,154,74,132)(30,48,75,128)(31,119,52,101)(32,85,53,145)(33,111,54,103)(34,87,55,147)(35,113,56,105)(36,89,57,149)(37,115,58,107)(38,81,59,141)(39,117,60,109)(40,83,51,143), (1,100,40,28)(2,91,31,29)(3,92,32,30)(4,93,33,21)(5,94,34,22)(6,95,35,23)(7,96,36,24)(8,97,37,25)(9,98,38,26)(10,99,39,27)(11,58,80,70)(12,59,71,61)(13,60,72,62)(14,51,73,63)(15,52,74,64)(16,53,75,65)(17,54,76,66)(18,55,77,67)(19,56,78,68)(20,57,79,69)(41,105,136,88)(42,106,137,89)(43,107,138,90)(44,108,139,81)(45,109,140,82)(46,110,131,83)(47,101,132,84)(48,102,133,85)(49,103,134,86)(50,104,135,87)(111,156,146,129)(112,157,147,130)(113,158,148,121)(114,159,149,122)(115,160,150,123)(116,151,141,124)(117,152,142,125)(118,153,143,126)(119,154,144,127)(120,155,145,128), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,125,63,45)(2,44,64,124)(3,123,65,43)(4,42,66,122)(5,121,67,41)(6,50,68,130)(7,129,69,49)(8,48,70,128)(9,127,61,47)(10,46,62,126)(11,85,97,145)(12,144,98,84)(13,83,99,143)(14,142,100,82)(15,81,91,141)(16,150,92,90)(17,89,93,149)(18,148,94,88)(19,87,95,147)(20,146,96,86)(21,114,76,106)(22,105,77,113)(23,112,78,104)(24,103,79,111)(25,120,80,102)(26,101,71,119)(27,118,72,110)(28,109,73,117)(29,116,74,108)(30,107,75,115)(31,139,52,151)(32,160,53,138)(33,137,54,159)(34,158,55,136)(35,135,56,157)(36,156,57,134)(37,133,58,155)(38,154,59,132)(39,131,60,153)(40,152,51,140) );
G=PermutationGroup([[(1,110,63,118),(2,144,64,84),(3,102,65,120),(4,146,66,86),(5,104,67,112),(6,148,68,88),(7,106,69,114),(8,150,70,90),(9,108,61,116),(10,142,62,82),(11,43,97,123),(12,151,98,139),(13,45,99,125),(14,153,100,131),(15,47,91,127),(16,155,92,133),(17,49,93,129),(18,157,94,135),(19,41,95,121),(20,159,96,137),(21,156,76,134),(22,50,77,130),(23,158,78,136),(24,42,79,122),(25,160,80,138),(26,44,71,124),(27,152,72,140),(28,46,73,126),(29,154,74,132),(30,48,75,128),(31,119,52,101),(32,85,53,145),(33,111,54,103),(34,87,55,147),(35,113,56,105),(36,89,57,149),(37,115,58,107),(38,81,59,141),(39,117,60,109),(40,83,51,143)], [(1,100,40,28),(2,91,31,29),(3,92,32,30),(4,93,33,21),(5,94,34,22),(6,95,35,23),(7,96,36,24),(8,97,37,25),(9,98,38,26),(10,99,39,27),(11,58,80,70),(12,59,71,61),(13,60,72,62),(14,51,73,63),(15,52,74,64),(16,53,75,65),(17,54,76,66),(18,55,77,67),(19,56,78,68),(20,57,79,69),(41,105,136,88),(42,106,137,89),(43,107,138,90),(44,108,139,81),(45,109,140,82),(46,110,131,83),(47,101,132,84),(48,102,133,85),(49,103,134,86),(50,104,135,87),(111,156,146,129),(112,157,147,130),(113,158,148,121),(114,159,149,122),(115,160,150,123),(116,151,141,124),(117,152,142,125),(118,153,143,126),(119,154,144,127),(120,155,145,128)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,125,63,45),(2,44,64,124),(3,123,65,43),(4,42,66,122),(5,121,67,41),(6,50,68,130),(7,129,69,49),(8,48,70,128),(9,127,61,47),(10,46,62,126),(11,85,97,145),(12,144,98,84),(13,83,99,143),(14,142,100,82),(15,81,91,141),(16,150,92,90),(17,89,93,149),(18,148,94,88),(19,87,95,147),(20,146,96,86),(21,114,76,106),(22,105,77,113),(23,112,78,104),(24,103,79,111),(25,120,80,102),(26,101,71,119),(27,118,72,110),(28,109,73,117),(29,116,74,108),(30,107,75,115),(31,139,52,151),(32,160,53,138),(33,137,54,159),(34,158,55,136),(35,135,56,157),(36,156,57,134),(37,133,58,155),(38,154,59,132),(39,131,60,153),(40,152,51,140)]])
62 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | ··· | 4F | 4G | 4H | 4I | ··· | 4M | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10N | 20A | ··· | 20H | 20I | ··· | 20X |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 20 | 20 | 20 | 2 | ··· | 2 | 4 | 4 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
62 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | D10 | D10 | D10 | D10 | D10 | C4○D20 | 2+ 1+4 | D4⋊6D10 | D4⋊8D10 |
kernel | C42.116D10 | C42⋊D5 | C4×D20 | D10.12D4 | D10⋊D4 | C4.Dic10 | C4⋊D20 | C23.23D10 | C20⋊7D4 | C20⋊2D4 | C20⋊D4 | D4×C20 | C4×D4 | C20 | C42 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | C4 | C10 | C2 | C2 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 16 | 2 | 4 | 4 |
Matrix representation of C42.116D10 ►in GL6(𝔽41)
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 9 | 0 |
0 | 0 | 0 | 30 | 0 | 9 |
0 | 0 | 32 | 0 | 11 | 0 |
0 | 0 | 0 | 32 | 0 | 11 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 24 | 40 | 0 | 0 |
0 | 0 | 1 | 17 | 0 | 0 |
0 | 0 | 0 | 0 | 24 | 40 |
0 | 0 | 0 | 0 | 1 | 17 |
17 | 39 | 0 | 0 | 0 | 0 |
21 | 24 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 7 |
0 | 0 | 0 | 0 | 34 | 7 |
0 | 0 | 40 | 7 | 0 | 0 |
0 | 0 | 34 | 7 | 0 | 0 |
17 | 39 | 0 | 0 | 0 | 0 |
22 | 24 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 11 | 33 | 23 |
0 | 0 | 27 | 27 | 8 | 8 |
0 | 0 | 8 | 18 | 27 | 30 |
0 | 0 | 33 | 33 | 14 | 14 |
G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,32,0,0,0,0,0,0,30,0,32,0,0,0,0,30,0,32,0,0,9,0,11,0,0,0,0,9,0,11],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,24,1,0,0,0,0,40,17,0,0,0,0,0,0,24,1,0,0,0,0,40,17],[17,21,0,0,0,0,39,24,0,0,0,0,0,0,0,0,40,34,0,0,0,0,7,7,0,0,40,34,0,0,0,0,7,7,0,0],[17,22,0,0,0,0,39,24,0,0,0,0,0,0,14,27,8,33,0,0,11,27,18,33,0,0,33,8,27,14,0,0,23,8,30,14] >;
C42.116D10 in GAP, Magma, Sage, TeX
C_4^2._{116}D_{10}
% in TeX
G:=Group("C4^2.116D10");
// GroupNames label
G:=SmallGroup(320,1234);
// by ID
G=gap.SmallGroup(320,1234);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,675,192,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1*b^2,b*c=c*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=a^2*c^-1>;
// generators/relations